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Multichromophore dendrimers are able to transfer energy rapidly Chart 1. Building Blocks of PA Dendrimers Studied in This Work
and efficiently to a central corfe? To understand energy flow in R 1H  R=H R=H
these molecules, one must identify the relevant light-absorbing units _ 1-TMS: R = Si(CH,),, R =H
. . . . .. . ——R  1-Ph: R= 3,5-ditertbutylphenyl,
and determine their electronic coupling. This is straightforward for R’ = tertbutyl
well-separated chromophores interacting through a Forster mech- R
anisnt but more difficult for conjugated supermolecules such as I

the highly efficient phenylacetylene (PA) dendrimémrevious ® x + ®

workers have postulated that the electronic states in the PA den- p T
drimers are localized on the dendrimer brancitesnder the as- R R
sumption that meta-conjugation blocks electronic delocalization. 2H  R=H &H  R=H

This reasoning is based on ground-state considerations, however, Z,m& 2 :i'giiﬂ;butylphenyl 2::,?1":& E:;’éﬂﬁ;butylphenyl
and the situation may be quite different for excited statesthis

Communication, we use theory and experiment to show that, while 12

b
the subunits of the PA dendrimers are weakly coupled in their equi- ®

librium ground-state geometry, they can become strongly coupled

in the excited state. This geometry-dependent electronic coupling

will affect the modeling of energy transfer in these molecules.
Chart 1 shows the simplest building blocks for larger PA
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dendrimers. Normalized steady-state absorption spectra for com- 02k
pounds1-Ph through3-Ph are shown in Figure la. Progressing AN S VA A
through the series, there are only modest changes in the absorption Wavonambers om

spectra: the low energy peak shifts 8600 cnr! and is slightly Figure 1. Absorption (a) and emission (b) spectra in cyclohexane.

enhanced. The lack of significant shifting or reshaping with
increasing dendrimer size led others to conclude that the excitations
were localized to the individual dendrimer brancheget while

the absorption spectra suggest a common chromophore, the emissio
spec_tra Ch‘f"”ge drgmatic_:ally with dendrimer size (Figure 1b) and Calculations were carried out for tH{&—3)-H series, where we
are |ncon5|stent. with this plctulre.l The high energy peak of the perform ground- and excited-state geometry optimizations using
fluqrescence shifts by 2000 cntt with each adc_imonal PA group, state-averaged CASSERwith the 6-31G basis set. Dynamic
while the spectral shape evolves from a relatively broad emission electron correlation is included with CASPT2 correctidir the

spectrum with an anomalous peak progressiofr-Ph to a well- larger(1—3)-Ph series, B3LYP-DFT with the 6-31G** basis set is
defined Franck Condon progression iB-Ph. Measurements of ;seq to optimize ground-state geometries, and the excited-state
fluorescence lifetimes and quantum yields give values of 0.74 ns, gjactronic structure in the Franelcondon region is modeled as
0.55 (1-Phat 77 K), 28 ns, 0.152Ph), and 14.9 ns, 0.353¢(Ph). above. States are equally weighted in the averaging, and the number
Fluorescence decays are all single exponential and independent ofs states included was as small as possible while capturing the
concentration, ruling out the presence of aggregates. These valueg,piically bright states.

lead to radiative lifetimes increasing from 1.35 ndiPhto 28 ns In Figure 2a, we show the results of calculations for the electronic
in 2-Ph to 43 ns in3-Ph. A Strickler—Berg analysis predicts  excited states of th@-H and 3-H dendrimers at their relaxed
radiative lifetimes of +2 ns in all three molecules. As expected, ground- and excited-state geometries (which determine the absorp-

emission in these molecules, we apply ab initio quantum chemistry
for the low-lying electronic states. Because the spectroscopy of the

1-3)-H series resembles that of tfie-3)-Ph series, we investigate
e simplest dendrimers at the highest level of theory possible.

the trimethylsilane (TMS)- and H-terminated analogueglef3)- tion and emission spectra, respectively). The level ordering is clearly
Phabsorb at higher energy. However, apart from some differences different for the two nuclear configurations. &H, for example,
in the relative absorption peak ratios, the spectroscopil ©8)- absorption from the ground state goes to three quasi-degenerate

TMS and (1-3)-H parallels that of1—3)-Ph, suggesting photo-  excited states. Optimizing the excited-state geometry leads to a
physics which is relatively unperturbed by substituents on the ends cumulenic structure, lifting the electronic state degeneracy and
of the acetylene groups. The decay times and spectral shapes argeading to a weakly emissive state below two higher states that
essentially independent of solvent, from cyclohexane to tetrahy- carry most of the oscillator strength. Similar effects are observed
drofuran to CHCI,. for 2-H, where two quasi-degenerate states split into two non-
The large shifts and shape changes in the emission spectra, alongquivalent states in the relaxed excited-state geometry. These results
with changes in lifetime and oscillator strength, indicate that the are qualitatively similar to what would be expected from an exciton
emitting states are different from the absorbing stateglin3)- modef where the excited-state coupling is negligible during the
Ph. To clarify the origin of the asymmetry between absorption and absorption event, but grows as the molecule relaxes to a different
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Figure 2. (a) Calculated electronic level structure for tBeH and 3-H Compound

dendrimers for both absorbing and emitting geometries. Also shown are Figure 3. Stokes shifts for HM)- and Ph &)-terminated compounds.

the transition energies and transition dipole moments. (b) The results of a Thggretical CASPT?2 valuesTj for (1—3)-H. Exciton model ©) Stokes
simple exciton model with intermolecular couplifggrowing more negative shifts offset by 5500 crmi, whereV = —1434 cnl.

after absorption and relaxation on the excited state.

nuclear geometry on the excited state. For example2-h a through-bond electronic interactions between chromophi@rasc
nonzero negative intermolecular coupliideads to a splitting of ~ the relaxed excited state of DPA has considerable cumulenic
the excited states to form an H-type dimer, where the lower state character, and thus more charge-transfer character, which could lead
has a weaker transition dipole than the upper state. Figure 2b showso larger coupling. The origin of the negative signwis currently

the results of a simple excitonic coupling model where= 0 in under investigation. The last question is what role these new states
the ground-state geometry and becomes negative in the relaxecplay in the energy transfer dynamics. Femtosecond studies of
excited-state geometry, leading to an observable Stokes shift. Thistransient absorption and fluorescence, as have been carried out for
model, where the exciton coupling varies depending on geometry, other multichromophoric moleculéswould be very useful in this
predicts the qualitative trends for the emission cross sedtion context. At a minimum, our results imply that Bter models of
(inversely proportional to radiative lifetime) in the calculations and energy transfer in PA dendrimers should be modified to take
the experiments. It also predicts that the two higher-lying excited different distances and dipole orientations into account. Asymmetric
states irB-H are degenerate, which is not the case in the calculation, branching, for example, a funnel structéreguld affect the structure

a discrepancy possibly due to additional vibrational distortion and of the excitonic state and energy transfer.

symmetry-breaking which cannot be taken into account by the Acknowledgment. This work was supported by DOE grant
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seen in Figure 2, we compare the theoretical and experimental
absorption-fluorescence energy difference fdi—3)-H. The
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the largest oscillator strength at ti& minimum. The emitting
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